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A manifestly scaling-invariant version of the Kirchoff-D'Adhemar-Penrose field 
integrals is presented. The invariant integral expressions for the spinning massless 
free fields are directly transcribed into the framework of twistor theory. It is then 
shown that the resulting twistorial field integrals can be thought of as being 
equivalent to the universal Penrose contour integral formulas for these fields. 

1. I N T R O D U C T I O N  

The Ki rchof f -D 'Adhemar -Penrose  (KAP) integral expressions can be 
looked upon as powerful tools for evaluating spinning massless free fields 
on real Minkowski space in an explicit way (Penrose, 1963, 1980). In these 
expressions, the null initial data (NID)  for the fields are specified at arbitrary 
nonsingular points of  real null hypersurfaces. Those components  of  the 
fields which are associated with the (null) directions of  the generators of  
the hypersurfaces are, effectively, regarded as the N I D  for the fields. Par- 
ticularly, the field integrals involve the derivatives of  the N I D  for the fields 
in the directions of  the generators of  the N I D  hypersurfaces. Indeed, these 
directional derivatives, being defined at nonsingular points of  the N I D  
hypersurfaces,  suitably combine the usually required normal and tangential 
derivatives of  the N I D  for the fields (Penrose and Rindler, 1984; Penrose, 
1975). Moreover,  the N I D  for the fields enter into the field integrals together 
with the convergence of  the generators of  the N I D  hypersurfaces. The field 
integrals are taken over the (smooth) cross sections which are provided by 
the intersection of appropr ia te  null cones with the N I D  hypersurfaces. 
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This paper is mainly concerned with transcribing a slightly modified 
version of  the KAP field integrals into the framework of twistor theory. We 
will restrict ourselves to considering the future null cone of an origin of 
real Minkowski space as the NID hypersurface for all the fields. In par- 
ticular, it will enable us to carry out the entire twistorial transcription in a 
straightforward way (Section 3). Our modified version of the field integrals 
is manifestly invariant under arbitrary scalings of the elements of  certain 
spinor bases. These are particularly used for defining the relevant NID sets 
for the fields (Section 2). The modified field integrals are taken over the 
two-dimensional space of  all null zigzags starting at the origin of real 
Minkowski space and terminating at a fixed point of the interior of  the 
future cone of  the origin. Indeed, such a point defines a future-timelike 
vector in real Minkowski space. Actually, the introduction of these integrals 
is based upon a particularly simple Huyghens'  principle. The standard 
twistor functions representing the spinning massless free fields (see, for 
example, Penrose and Ward, 1980) arise here as suitable contour integrals 
of simple holomorphic twistor one-forms. This fact will enable us to derive 
the universal Penrose contour integral formulas for the spinor fields out of 
our twistorial field integrals (Section 4). It may well be said that the main 
motivation for this work is the fact that one might eventually gain new 
insights into the theory of  twistors upon transcribing suitably modified 
expressions for massless free fields of arbitrary spin. 

The unprimed and primed spinor fields with which we deal here will 
be referred to as left-handed and right-handed fields, respectively. However, 
there will be no attempt to consider these fields as quantum fields at this 
stage. We make use of  it as conventional terminology, and even use it for 
designating quantities other than the spinor fields. In addition, it will be 
effectively assumed that the spinor fields are analytic functions throughout 
real Minkowski space. 

2. BASIC DEFINITIONS AND FIELD INTEGRALS 

The main aim of this section is to exhibit the invariant version of the 
integral expressions for the spinning massless free fields. We shall first 
introduce some relevant basic definitions and the NID sets that play an 
important role here. The explicit field integrals are then presented. 

2.1. Massless  Free Fields on Real Minkowski Space 

A left-handed massless free field of spin s on real Minkowski space 
R• is a totally symmetric spinor field ~bAB...c(X) with n = - 2 s  unprimed 
indices, which satisfies the massless free-field equation 

~AA'~.~AB... c(X) = 0 (2.1.1) 
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throughout NM. It can be regarded as a complex-valued function, of the 
usual four real variables x ~ x 1, x 2, x 3, on NM. 

Similarly, a right-handed massless free field of  spin s on RM is a 
corresponding totally symmetric spinor field 0 A ' w  C'(x) with n = 2s primed 
indices, which satisfies the complex conjugate form of  (2.1.1) 

V AA,O A'B'' '" C ' ( X )  = 0 (2.1.2) 

It is easily verified that the wave equation 

v A A ' V  AA , I~ (X  ) = [- ']O(X) = 0 (2.1.3) 

holds throughout RM, with O(x) standing for any component of either 
6AB... c(X) or 0 a ' w  C'(x). 

2.2.  N u l l  In i t ia l  D a t a  S e t s  

We are now in a position to introduce a prescription for defining the 
relevant NIDSs. Some definitions of  weighted scalars that are considered 
in the spin-coefficient formalisms will be used here (see Penrose and Rindler, 
1984). 

The future null cone Co of an origin O of ~M is a three-dimensional 
manifold in ~M, given by 

Co ~ = {future-pointing vectors xAA'~ RM [ eABeA,wxAA'x Bw= 0} (2.2.1) 

Clearly, the set of singular points of  Co consists of  the origin. Let JeAA' be 
some nonsingular point of  C +. Set up a pair of  spin bases 

I A  {{o , ga},{6 A', 5A'}} at Jc Aa' 

such that the real null vectors 

1A-A' 5AqA'} (2.2.2) O O  , 

point in forward (future) null directions through Jc AA'. Also, define the inner 
products at Jc AA' 

1Z ~- O1 A 20 A , Z1 = o" A ' ~ A ~ (2.2.3) 

and let the spinors ~A and 6 A' be chosen covariantly constant along the 
1 

generator Yl of  Co that passes through ~ a a ' .  

The complex scalar functions 
1A 1 A 1 B  1C 1 &e(O ; J c )=o  o " . . o  &AB...c(X) (2.2.4) 

and 

OR -A '  ~ A ' ~ B '  - C '  1 (o ;J  c)=1 , . . .  o OA'B'...c'(X) (2.2.5) 
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define, respectively, the { -2s ,  0; 0, 0}-left-handed and {0, 0; 0, 2s}-right- 
handed  N I D  for the spinor  fields on C~- at ~AA' (see, for  instance,  Penrose,  
1980). We thus have the fol lowing NIDSs :  

1 A  1 
L N I D S  = {4~L(o ; x)}, R N I D S  = {0R(6a'; Jr (2.2.6) 

The spin scalar operators  on C~ which act on these N I D s  are 
1 

~s-  r 1 - (~)-2s {ED - (1 - 2s)~(~)} (2.2.7) 

1 

^ _ r {X_( I+Zs)~, (~)  } ~ ~  (2.2.8) 

We observe that ~-,_ is the complex conjugate of ~s+. The operator (2.2.7) 
1 J 

is the {2s, 2s; 0, 0}-left-handed spin scalar opera tor  + on Co,  whereas the 
opera tor  (2.2.8) is the {0, 0; - 2 s ,  - 2 s } - r i g h t - h a n d e d  spin scalar opera tor  on 
Co .  In  these defining expressions,  ~" is a suitable affine parameter  along 
the genera tor  7, o f  C~ and D is the differentiation opera tor  in the direct ion 

0 1 
of  y~ at ~AA'. The scalar funct ions p(x) ,  oR(~:) are real, and satisfy the reality 
relation on C~ 

~(~r = 0R(q) (2.2.9) 

In  fact, the real funct ion ~(~) is the convergence  o f  the generators  o f  C~ 
at ~r (see Penrose,  1980). Notice that  (2.2.7), (2.2.8) can be rewritten as 

1 1 
r r 

f , -  - (,~)-2s ~L, ~s+ = (~)2;~ ~,~ (2.2.10) 

X,c; " , ~ o A  / 

o 

"X~~ x/'1 

2 ^ - ~ 1 
1 I ~ r . 8  0 A ; x )  

5, r (~A 

0 

(Q) (b) 
�9 - 1 2 - Fig. 1. A pair of spin bases {{Oa, Oa} {6A Oa,}} is set up at a nonsingular point ~AA'  that 

�9 + ' I . ' . 2  �9 1 - lies on the future null cone Co of some origin O of R~. The spmors Oa and o a, are chosen 
+ [ 1AA to be covariantly constant along the generator 71 of C o that passes through x ' such 

that ~aa' can be defined with respect to O in terms of a suitable affine parameter ~': (a) the 
left-handed ~'-null initial datum is specified at ~r and represented by a white datum spot; 
(b) the right-handed ~--null initial datum is specified at 1AA', and represented by a black datum 
spot. 
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where the r are the usual real conformal-invariant form of the 
compact spin-coefficient derivative operators (see Penrose and Rindler, 
1984). It is worth remarking that these operators are of  the type {1, 0; 0, 1}. 

We now let the operators (2.2.10) act on the NID (2.2.4) and (2.2.5), 
to obtain the ~-NIDSs on Co 

,'~ 1 A  l A - A '  l ~'-LNIDS={~,_~bL(o ;x)}, ~ ' -RNIDS={Ts+0R(o ;x)} (2.2.11) 

A diagram illustrating the construction given here is shown in Figure 1. 

2.3. The KAP Field Integrals 

In order to introduce the explicit KAP field integrals, let us now define 
a point ~r lying in the interior of the future cone of O by 

~ AA' = ~ AA'..~_ 2r~ AOA~ (2.3.1 a) 
2 

with ~" being a suitable affine parameter along the null geodesic 3'2 of R ~  
that passes through ~AA' and ~c AA' (see Figure 2). We notice that ~aa' is 
effectively future-null-separated from ~az '  Indeed, we can reexpress (2.3.1 a) 

2 AA ~ 
X 

. 

~ A I ~ / 1  AA I 
X 

1 / 
1 
0 A 

1 
0 A 

0 
Fig. 2. The future-timelike vector representing a point 2AA '  that lies in the interior of  the 
future cone of  an origin O of  RM. The point ~aa' is future-null-separated from ~AA'E C~. 
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as  

~ A A  ~ l l A - A ' _ _  22 A - A "  = ro o -t-ro o (2.3.1b) 
1 2 

where ~" is the affine parameter involved in the definitions (2.2.7) and (2.2.8). 
The explicit KAP integral expressions for the fields are written as 

follows (see Penrose, 1963, 1975, 1980): 

I . - -2-~  c7~c'~ r 

and 

1 f eROR(q~'; }) 1 
oA'B'"'C'(~C)=-2-~ J C ~ C ;  6A' f iB' '  " " ~  r 2 2 2 2 S (2.3.3) 

1 

where the meaning of S will become clear shortly. According to these 
expressions, the massless free fields are determined at }AA' by their #-null 
initial data defined on C0 at  }AA'. Upon evaluating each field, one performs 
an integral which is taken over the (spacelike) two-dimensional intersection 
of Co with the past null cone C~- of ~ A A '  (see Figure 3). In fact, we have 
(see Section 4.14 of Penrose and Rindler, 1984) 

C• ~ C~- ~ S 2 (2.3.4) 
1 

Thus, S is a two-form that defines the element of  surface area of S 2 at Jc AA'. 
We can, therefore, formally reexpress each of the above integral expressions 
as a field integral which is taken over a spacelike two-sphere. It must be 

1 

OA _ 6 A 

/ c; 

0 

Fig. 3. The geometry for the Ki rchot t -D 'Adhemar-Penrose  integral expressions. Each field 
integral is taken over the intersection of C~- with the past null cone C)- of ~Aa,. The spinor 
fields are determined at }AA' from the i r / , -nul l  initial data specified at ~aA,. 
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remarked that these integrals are not invariant under arbitrary scalings of 
the elements of the spin bases introduced in Section 2.2. 

2.4. The Invariant Field Integrals 

We shall next introduce a manifestly scaling invariant (SI) integral 
expression for each of  the massless free fields, based upon a particularly 
simple Huyghens'  principle. It will be seen also that the SI field integrals 
can be rewritten in a remarkably simple form in terms of certain field 
densities on C0. l 

Let K denote the two-dimensional abstract space of pairs of null 
geodesic segments of RM incident at ~AA' such that, for each pair, one 
segment starts at the origin O of  ~M and terminates at ~AA', while the 

1 
other starts at ~AA' and terminates at ~AA'. Any element of N can be seen 
as a null zigzag in RM whose edges are defined according to the above 
prescription. 1 1 

We now define an SI two-form K on ~ as follows: 

k ~,1 _12 . = a / z z r r  (2.4.1) 
1 

1 1 where z, { are the inner products at }AA' defined in (2.2.3), and r, 2 are the 
affine parameters involved in the relation (2.3.1b). It becomes evident that 

1 
~ S 2 (2.4.2) 

In our terminology, we can state Huyghens'  principle as follows: 

A spinning massless free field on RM is entirely determined at some 
fixed point ~r that lies in the interior of  the future cone of  O and that is 
future-null-separated from an arbitrary nonsingular point ~c aa' of  Co by its 
~'-null initial datum on CO at ~r 

For the left-handed field, this formulation of  Huyghens'  principle is 
explicitly exhibited by the following SI left-handed field integral: 

~ ) A B . . . C ( ~ , )  = 1 f ~  2 2 2 ^ __ /1  M 1 1 2--~ ' O A O B "  " " O C ~ l S - q ) L [ O  ; x ) g  ( 2 . 4 . 3 )  

Similarly, for the right-handed field, the SI field integral is 

721 6"'o"'... o A ' B ' " ' C ' ( x ) = z , , ,  2 2 2 1 l (2.4.4) 

A remarkably simple form of  the field integrals (2.4.3) and (2.4.4) can 
be achieved by defining the following SI massless free-field densities on 
CO at ~AA': 

C ~ A B . . . C ( ~ r  2 2 2 ..~ - -  . , 1 M  = OAO B " " " O C~1s _ (~LkO "~ X )  (2.4.5) 
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and 

These yield 

and 

oA 'B ' . - .C ' (~ )  -- ~ A ' o B ' .  �9 . oC ' ,~ . s+OR(OM'  ; ~ )  
- - 2  2 2 1 1 

(2.4.6) 

1 L ,1 6AB...c(X) =-2"-~ f~AB...c(X).K (2.4.7) 

oA'B'"'C'(x)----2--~ I~ oA'B'"'C'(x)IK (2.4.8) 

It will be seen in Section 3 that the simplicity of these integrals is preserved 
when we translate them into twistorial terms. 

3. TWISTORIAL TRANSCRIPTION 

For transcribing the SI field integrals into twistor form, we shall make 
use of the geometric pictures of Section 2. It will be seen that the choice 
of C~ as the NID hypersurface for the spinor fields allows one to carry 
out the twistorial transcription in a direct way. 

3.1. Twistor Null Initial Data 

We define the null dual twistors through ~ A A '  

1 1 .1 AA'I  \ 1 W~ = (OA, --ZX OA) = (OA, ~V A') (3.1.1a) 
2 2 .1 AA'2 \ W~ = (OA, --tX OA) = (OA, ~A') (3.1.1b) 

Notice that these dual twistors are associated with the null geodesics Y, 
and Y2, respectively. Their complex conjugates are given by 

Z ~ = ~TV~ = (i~c AA' , , I~A, ' l~A, ) = ( c A ,  I~A, ) (3.1.2a) 

Z[32 = t~V'g2 = ( ixAA'o2A"  2 ~A') = ( Z A '  qA') (3 .1 .2b)  

It is evident that the above null twistors intersect at ~c aA', namely 
ZA 1 A 2 .~AA' W a = 0 = Z  Wa at (3.1.3) 2 1 

Let PN* denote the n~l  portion of the dual projective twistor space. The 
dual twistors W~ and W~ are defined in PN*, respectively, as the intersec- 
tions of the dua~ projective line X* representing ~r with the fixed dual 

~AA' .  projective lines X* and X* representing the fixed points O and Each 
of these fixed dual projective lines is topologically a Riemann sphere S 2 
(see Penrose and Rindler, 1986) whose points are associated with all the 
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dual twistors incident with the point of R ~  corresponding to it. It follows 
that, as ~c AA' varies suitably, two subspaces ~o* and ~* of the Riemann 
spheres arise, ~* consisting only of points associated with We, and @* 
consisting only of points associated with W~. Evidently, ~o* is contained 
in the Riemann sphere ~ *  representing O, while ~* is contained in the 
Riemann sphere ~*  representing ~ A A ' .  

We now define the twistor {-2s, 0; 0, 0}-left-handed NI datum on the 
product space ~* of @* with @* as 

1 2 ~ . .  1 2 txv -zS-~l (I  WgW~) t~r(W~ , W~) (3.1.4) 
1 2 1 2 

where ~L(Wr W~) is homogeneous of degree -1  in W~ and 2 s - 1  in W~, 
and satisfies 

, a , 2 
Wa 2-:- qbL(W~, W , ) : 0  (3.1.5) 

w ~  
2 1 2 1 2 

Thus, the We dependence of~L(  W~, W~) only comes through Wt,~W~ 3 [see 
(3.4.5) below]. 

The twistor NI datum corresponding to (2.2.5) is defined similarly. All 
the relevant projective lines lie in the null portion P~ of the projective 
twistor space. The two subspaces @0 and ~2 of the relevant Riemann spheres 
~o and ~2 representing O and ~ a a '  here consist only of points associated 
with Z ~ and Z ~, respectively. We thus have 

1 2 

(I,~Z~Z~)2~+'Oe(Z~, Z ~) (3.1.6) 

as the definition of the twistor {0, 0; 0, 2s}-right-handed NI datum on the 
product space ~ of @o with @2. The twistor function | o, Z ~ satisfies 
on ~ properties similar to the previous ones. 

1 2 

Each of the twistor functions dPL(W~, We) and O g ( Z ~  o) is a 
holomorphic twistor function in both twistors on the appropriate product 
space, having a suitable singularity set (see Section 3.4 below). The standard 
twistor functions representing the spinning massless free fields will emerge 
as contour integrals of holomorphic one-forms involving certain derivatives 
of these functions (see Section 4). These integrals are taken over one-real- 
dimensional closed contours that cannot be continuously shrunk to a point 
without crossing some singularity. 

3.2. Twistorial Expressions for ~'-Operators and Twistor ~--NID 

We now derive simple twistorial expressions for the spin scalar 
operators ~s- and ,~'s+. These twistorial operators act on the appropriate 
twistor-function kernels of the twistor NID (3.1.4) and (3.1.6), leading us 
thereby to the holomorphic twistor ~'-NID on ~* and @. 
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Recall that the differentiation operator a t  ~AA" in the direction of the 
generator y~ of C~- is given by 

= o a o a  •AA' (3.2.1) 1 

Using (3.1.1b) together with the relation on C~- 

~AA'  ~--- 1 1 A -A '  ro o (3.2.2) 
1 

we readily obtain 

1 ~V A, 0 
r O~V A' ( 3 . 2 . 3 )  

Also, combining (3.2.2) with the defining expression for the convergence 
of the generators of C~- at }AA' 

0 (~ , ,  , 1 B2 ,--1 1 2 C - C  ' 1  
I) ,) = tO OB) OAO 0 Vcc ,~  a (3.2.4) 

we find that 

1 
~(}) = - T  (3.2.5) 

r 

In fact, the twistorial relation 
, ~ =  ~ 2 1 

I W~,W,, (3.2.6) 

holds at ~c AA' (see, for example, Penrose and Rindler, 1986). Using (3.2.3), 
(3.2.5), and (3.2.6), together with the homogeneity properties and the 

1 2 
definition (2.2.7), we conclude that the ~--operator acting upon ~L( W~, W~) 
is expressed by 

( - - 1 )  - 2 s + 1  2 0 
^ = ~ (3.2.7) 

~1 s -  ( i t ~ v ~ v t , # ~ ) - 2 s O A o ~ A  

Taking the complex conjugate of (3.2.7), we obtain 

( - 1 )  2"§ 0 
~* v 2s g ' + -  (I,~Z, Z2 ) Oa' 06A, (3.2.8) 

which is the corresponding twistorial expression for the {0, 0 ; -2s , -2s}-  
right-handed spin scalar operator that acts on OR(Z e, Zt~). Note that the 
corresponding twistorial expressions for the conformal/~-operators can be 
derived by inserting (3.2.7) and (3.2.8) into (2.2.10), taking into account 
(3.2.6) and its complex conjugate. 
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It now becomes clear that if we let the twistorial operators (3.2.7) and 
(3.2.8) act appropriately on the twistor functions to which we have referred 
above, we are led to 

; , ~ _ 2 ~ + 1 / ~ 1  2 ,2 0 1 2 
=~--~J t~ W~W~)OA_---~--C~L(W~, W~) (3.2.9) 

~OA 

and 

,~ v 2s+1  ^ 13 (L z z ) 
1 2 1 1 

_2_ 0 
~- ( - 1 ) 2 s + I ( I t z l " Z I x Z ~ ' ) q A '  OqA" ~ ) R ( Z ~ '  Z B )  (3.2.10) 

The twistor functions (3.2.9) and (3.2.10) are the holomorphic twistor ~'- NID 
on 9 "  and 9,  respectively. These twistor NID are indeed associated with 
the elements of  the sets ~'-LNIDS and -k-RNIDS introduced earlier [see 
(2.2.11)]. 

1 
3.3. Holomorphic Twistorial K-Forms 

It has been seen that the remarkably simple SI field integrals for the 
spinning massless free fields explicitly involve an SI two-form K defined 
on the two-dimensional space of  suitable null zigzags in g~M [see (2.4.7) 
and (2.4.8)]. In order to write down our twistorial field integrals (see Section 

1 
3.4), we need to translate K into twistorial terms. The twistorial expressions 
arising here are indeed associated with null zigzags in g~M whose edge-sets, 
at each stage, possess two edges. Generalized holomorphic expressions in 
the case of  an arbitrary number of edges have been given in Cardoso (1988). 
Actually, two conjugate holomorphic expressions will emerge here, one on 
9 "  involving only the dual twistors W,, W~, and the other on ~ involving 
only the twistors Z ~, Z ~. 1 

Consider the two-form element of surface area S of the spacelike 
two-sphere S 2 at ~AA'. It is evident that this two-form enters into the 

1 
definition of  K via (2.4.1). Its explicit defining expression at ~AA' is 

~ i l  - 
ZZ OAOA'  dxAA'A 2 - . 1  BB' ~ - -  - OBOIB, a x  

1 

By differentiating out the twistor relations 

~ / v A ' =  . 1 A A ' I  ~ t /A '  .I A A ' 2  
- -  IX  0 A , = - -  1X 0 A 

(3.3.1) 

(3.3.2) 
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and making suitable contractions, we arrive at two relations which, when 
substituted together with (3.2.6) and its complex conjugate into (3.3.1), 
yield the SI expression 

Za d~Va ^ Z , 2 dW~ 1 

S=(- i )  = . - 1 2 (3.3.3) 
( i.~w~ w~)( io~zoz ~) 

1 2 

The actual evaluation of the spinor fields involves also holding both the 
origin O and ~c AA" fixed. This procedure enables us to derive after a short 
calculation 

2 2 2 2 
dW~, = zr(I, ~Z Z ) ( I  W~ dW~) (3.3.4) 

1 ~ 1 2 

and 
1 1 1 1 

Z / t  �9 /z v Ar  d W ,  = t r ( I . ~ Z  Z ) ( I  W~ dW~) (3.3.5) 
2 ~ 1 2 

Now, combining (3.3.4) and (3.3.5) with (3.3.3), making use of (3.2.6) and 
its complex conjugate once again, we obtain the following SI twistorial 
expression on ~*: 

dW~ ^ I x~Vx  2 dW~ 
K = i (3.3.6) t~o 1 2 ) 2  

( I  "W,~Wo 

Clearly, the complex conjugate of (3.3.6) is the twistorial expression on 
given by 

1 I~vZlla" d Z  v ^ IArZ x d Z  ~ 
K = ( - i )  (I,~Z~Z~)2 (3.3.7) 

The formulas (3.3.6) and (3.3.7) are the desired SI holomorphic expressions 
1 

for K. 

3.4. The SI Twistorial Field Integrals 
1 

The holomorphic expressions for K together with the holomorphic 
twistor ~-NID of Section 3.2 lead us to particularly simple SI twistorial 
integral expressions for the spinning massless free fields. Each spinor field 
is then expressed in terms of an integral involving only an SI holomorphic 
twistor two-form on the appropriate product space. 

It is easy to verify that, as ~x AA' varies suitably, the following relation 
arises: 

2 1 1 c~B 1 2 
oAI~W~ awe (I WoWs) 1 = doA + V, OA (3.4.1) 

where v is a one-form of the type {1, 1; 0, 0). By replacing (3.2.9) and (3.3.6) 
into (2.4.3), taking both (3.4.1) and (3.1.5) into account, we obtain the SI 
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twistorial field integral 

( - - 1 )  - 2 s + l  q ~  2 2 2 1 2 e 2 
OAOB" �9 �9 OcdgL( Wo,, W,,) ^ I~ 'W~ dW,. (])AB"" C ( 2 )  2"JTi . IS  lXSl " 

(3.4.2) 
where ~L( t 2 W,, W~) is the holomorphic twistor one-form on @*, 

0 1 2 1 
----y-d~L(W,~, W,~) dW~ (3.4.3) 

ow. 
The product S ix  S ~ appearing beneath the integral sign of the formal 

1 
expression (3.4.2) means that one has first to perform the W integral 
along a closed path yL (~S  l) lying in ~ * c  ~o*, and then carry out the W 
integral along a closed path FL (~S  1) lying in N * c  I~* [see (4.1) and (4.5) 
below]. At each stage, the contour suitably avoids all the singularities of 
the relevant integrand. The entire singularity set appears, then, to be given 
as the union of two separated (closed) subsets of the appropriate Riemann 
sphere. It is evident that (3.4.3) satisfies the properties 

2 0 1 2 1 2 
Wx---y--~.L(W~, W ~ ) = ( Z s - 2 ) ~ . L ( W ~ ,  W,)  (3.4.4) 

and 
1 1 2 

~ L ( [ , ~ W a ,  t ~ W a . ~ i ~ W o : ) ~ .  2s-2.-r-~ / 1 2 v .'fLt W,, W~) (3.4.5) 

with/x, v e C - {0}, and h ~ C. 
A procedure similar to the one which led to (3.4.2) can now be adopted 

to obtain the SI twistorial field integral expression for the right-handed 
spinnning massless free field oA'B'"'C'(~). Thus, the resulting formal 
expression is 

( - - 1 )  2 s + l  

~s 6~'~ "6c'~ z~) ^I~'~z" az ~ Oa'B "...c'(}) = 21ri '• 2 2 2 " 1 2 2 

(3.4.6) 

where .OR(Z r Z t~) is the holomorphic twistor one-form on N, 

0 0 R ( Z O ,  Zt3) dZ ~ (3.4.7) 
O Z  A 1 2 

2 

and the relevant contours Yg and FR lie now in ~o c ~o and @2c ~2, 
respectively. Clearly, the one-form (3.4.7) satisfies properties similar to 
(3.4.4) and (3.4.5). 

The prescription leading to the twistorial integral (3.4.2) is illustrated 
in Figure 4. A projective picture associated with the twistorial integral (3.4.6) 
can be similarly drawn. 
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2" • 

Fig. 4. The dual projective lines ~(* ~(*, and ~(* in PN* representing the points O ~aa' 
2 ' 1 ' 0 2 l 2 ~ ' 

and x a A  in R~d. The line X* meets both X* and X* at W~ and W,, respectively, provided 
that ~c AA' is null-separated from both O and ~aA'. Each of the fixed projective lines X* and 
2 
X* is (topologically) represented by a Riemann sphere S 2. As 1 a a "  varies suitably, two 
subspaces ~o* and ~2" arise, ~o* being contained in the Riemann sphere ~o* associated with 
O and ~* being contained in the Riemann sphere ~ 2* associated with ~aa'. The ~V integration 
is taken along a closed path TL lying in ~o*, while the W integration is taken along a closed 
path FL lying in ~2". At each stage, the contour separates the entire singularity set of the 
relevant integrand into two disconnected closed sets. 

4. THE UNIVERSAL P E N R O S E  C O N T O U R  
INTEGRAL F O R M U L A S  

In this section, we shall see how the standard twistor functions rep- 
resenting the spinning massless free fields can be suitably given in terms of 
contour integrals of the holomorphic twistor one-forms that appear in the 
twistorial field integrals exhibited before. The universal Penrose contour 
integral formulas for these fields are then readily derived. 

As was previously indicated, one has to perform two independent 
contour integrals whenever the actual evaluation of either of our twistorial 
field integrals is required. This fact enables one to integrate (3.4.3) and 
(3.4.7), giving rise to the following holomorphic functions: 

2 (_1)_2s+1 ~ 1 2 
fL(W,~) = ~L(W,~, W~,) (4.1) 

J~ L ~  

defined on ~* ,  and 

fa(2Z~) = (-1)2s+1 ~rR=~o "On(Z~' Z ' )  (4.2) 

defined on 92. These holomorzphic functions are indeed homogeneous of 
degrees 2 s -  2 and - 2 s -  2 in W, and Z ~, respectively. In the left-handed 
case, for example, the homogeneity property follows immediately from 
(3.1.4) and (3.4.3). Explicitly, we have 

2 2 

fL( VW~) = V2s-2fL( W~) (4.3) 

and 

TR(/xZ ~) = tt -2" 2fn(Z'  ) (4.4) 
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with/~, u ~ C - {0}. Hence, the holomorphic functions (4.1) and (4.2) actually 
are the standard twistor functions which generate the fields. We are therefore 
again led to the universal Penrose contour integral formulas for the spinning 
massless free fields. Replacing (4.1) and (4.2) into (3.4.2) and (3.4.6), 
respectively, we obtain 

l ; 2 2 2 2 2 
- ~  Oa08" " ~cfL(W,~)I W~, dW, (4.5) 

and 

1 ~v 6A'6W'~ 6C'fR(Zt~)I~Z~" dZ~ 
2 2 2 2 

which are the formulas referred to above. 

(4.6) 

5. C O N C L U D I N G  REMARKS 

In this paper, we have presented a twistorial transcription of  (appropri- 
ately modified) KAP integral expressions. It was shown that the choice of 
the future null cone of  the origin of  RM as the NID hypersurface for the 
spinning massless free fields led us to the definition of the SI field densities 
which provide simple formal expressions for the spinor fields. These 
expressions not only enhance the Kirchoff-like character of the field 
integrals, but also allow them to be neatly fitted in with the twistor formalism. 
In addition, all the contours involved in our twistorial field integrals turn 
out to be defined in a remarkably simple way. 

The most important feature of the simple holomorphic twistor structures 
exhibited here is the correspondence between the valence of the involved 
twistors and the handedness of  the spinor fields. Only twistors lying in PN* 
enter into the twistorial left-handed field integral, while only twistors lying 
in PN enter into the twistorial right-handed field integral. Another feature 
of  our twistorial field integrals is the splitting of  the contour over which 
each of  the holomorphic twistor two-forms is to be integrated. The modified 
expressions for the spinning massless free fields in RM can be formally 
given as SI integrals taken over spheres S 2. After having transcribed these 
field integrals into twistorial terms, we found that each of  the twistorial 
field integrals turns out to be taken over a (suitable) contour whose topology 
is S ~ x S ~. If  the spinor fields are to be interpreted as wave functions, these 
features will play an important role. It is worth remarking that the situation 
considered here is apparently very different from that considered by Brain- 
son, Spading, and Penrose in connection with the problem of  finding an 
inverse to each of  the standard contour integral expressions (see Penrose, 
1975). In their work, the universal contour integral formulas for the spinor 
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fields are given at the outset.  It was stated that,  in the lef t -handed case, the 
relevant twistor  funct ion can be formally defined in terms o f  a con tour  
integral which  is taken a long an open  path  lying in the appropr ia te  subspace.  
This con tour  integral actual ly involves the same ho lomorph ic  twistor one- 
form as the one obta ined  explicitly here [see (3.4.3)], but  leads one to a 
twistor quant i ty  depend ing  u p o n  two arbitrary ho lomorph i c  funct ions o f  
the appropr ia te  dual  twistor. 
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